Primavera P6


Primavera is the Enterprise Project Portfolio Management (EPPM) Software. It can be use for any type of project like Construction Project, other Business Projects etc. It is generally used for Project Management, Project Scheduling, Risk Analysis, Resource Management, Cost Analysis, Opportunity Management. The basic function of this software is to run the project smoothly without any delay due to extreme situation. It use Critical Path Method (CPM) in which the Total Float (Slack) is zero. You can read blog & watch Video about CPM vs PERT by click HERE.


Primavera was launched in 1983 by Primavera System Inc, and then after gain too much popularity in Project Management field in different organizations that it generate other Versions like Primavera P3 and SureTrak. In 2008 Primavera was acquired by Oracle Corporation. In 2010 Oracle ceased the sale of P3 and suretrak and only after that Primavera P6 is used for almost all types of Project.

Let’s Quick Overview of Primavera Interface and General features discussed in the video attached here:

Hope You got Some Idea.

Thank You to be Here

Daily Progress Report (DPR)

This is one of the essential Documents while working in any construction Project. DPR actually shows the how your project are going on. It tells the progress of your construction work and other details like activities involve on each day, machinery involved or not, how many manpowers are there etc. You can add site pictures to visualize it in a better way or may be as simple document. You can prepare this document in MS Excel, MS Word, MS Power Point or using any other related tools. So here I have attached Sample format of DPR, also watch the video.

DPR Format

Watch the Video given below:


Comment Your Queries

====Thank You to be here===

Bar-Bending Schedule (BBS)

Bar-Bending Schedule (BBS) is the detail about cutting of rebars and quantity of rebars in a RCC Building,Bridges or any other RCC Construction project. It is clearly shows the cut length of rebars for each elements e.g footing, beams, column, slabs etc. This document is very helpful for steel fixers to follow the cutting of rebars for each elements. Everything is mention in a systematic tabular order e.g No. of Bar, Bar C/C Spacing, Size of bars, length of Bars, Weight of Bars. I have attached the sample of BBS format ate the End.

General Format of BBS

Watch the Videos below to know about the basics of this Document.


==Thank You==

Videos of Residential Projects

  1. Termite Treatment on Soil Before Plain Concrete for Foundation
Termite Treatment

2. To Check the Verticality of vertical Member

3. To Check the 90o

To Check 90o

4. Full Process of Residential Building Construction

Construction Stepwise

5. Anti-termite Treatment

Anti-Termite Treatment

6. Use of Pipe Level



7. Rebars Weighing Process in Factory

Rebars Weighing

8. Rain Water Draining

9. Stairs Layout Process

Stairs Layout Process

10. Soldier Piles

Soldier Piles

11. Concreting of Parapet Wall

Concreting of Parapet Wall

12. Backfilling


This Post will be updated timely as new videos Uploaded

====Stay Tuned====

Structural Analysis Book

Author : Russel Charles Hibbeler

This is most effective book for students and professionals who pursue study and practices in Structural Engineering. The theory and Problems links with practical approaches and real engineering judgements.

Use it for study and Practices only.

R.C Hibbeler

Civil Engineering Formulas

All the Formulas and calculation used in technical & design calculation in Civil Engineering and the related fields of Civil Engineering are incorporated in this Book.

Author: Tyler Gregory Hicks

Used this Book only for Study and Practices.

Civil Engineering Formulas

ASCE 7-22

American Society for Civil Engineer (ASCE) has published the latest version (ASCE 7-22) for Minimum Design Load and Associated Criteria for Building and Other Structure describes the means for determining design loads including dead, live, soil, flood, tsunami, snow, rain, atmospheric ice, seismic, and wind loads and their combinations for general structural design.
Structural engineers, architects, and building code officials will find the structural load requirements essential to their practice.

Download the Document for Study and Design purpose only.

ASCE 7-22

ACI 318-19

aci 318-19

American Concrete Institute (ACI) has published the Building Code Requirements for Structural Concrete which is the guide for Reinforced concrete structure while designing the structure. It provides the background of material and rationale for the code provision.

ACI has revised the guide after every 3 years. ACI 318-19 is the latest version. Originally it is made in US but many other countries has followed this document. It has two parts, both are incorporated in this document:

  • Building Code Requirements for Structural Concrete
  • Commentary on Building Code Requirements on Structural Concrete

Download this Document only for Study purpose and practical help.

ACI 318-19

Building Code of Pakistan (2021)


In this Blog I have discussed briefly the Building Code of pakistan (BCP) and in detail you can understand it when you study and practice it. You can download the updated version by just click on the link given at the end.


As Pakistan lies on a seismic junction of three major tectonic plates of the world including Eurasian, Indian and Arabian. The Building Code of pakistan-Seismic Provision-2007 (BCP-SP-07) was compiled Under PEC Governing Body in collaboration with National Engineering service Pakistan (NESPAK), Industry Practitioners, Ministry of science & Technology, Ministry of housing & Society and some other organizations along with assistance provided by the International Code Code (ICC) and American Concrete Institute (ACI). The need of that code was become crucial need due the safety was compromised in building designing and construction after the severe earthquake occurs in October, 2005 which causes about 87,000 casualties and 780,000 Building collapsed and 2.5 million people were homeless along with economic loss about PkR 441 Billion (US $2.3 billion)

Revised/Updated Code (BCP-2021)

The Building Code is abide to revise after every five years or earlier when needed but BCP-SP-07 was not revised since long time and now after long research shown that the Earthquake magnitude is enhanced in the last decade which becomes the necessity to revised the code.

As the previous Code (BCP-Sp-07) was taken from UBC-97. Now the UBC-97 is almost obsolete in all developed Nations. The updated version (BCP-2021) is based on International Building Code (IBC-2021) which the International Building Code (ICC) grant its permission under International Copyright Act.

With this upgradation of code the Performance Based Design (PBD) Philosophy which is advanced design Philosophy which employ the Non-Linear dynamic Analysis or Time history Analysis can also be used. Which now many country used this method in order to design the structure on the basis of the real response to the Earthquake forces rather than conventional code based Method.

The new code is based on IBC-2021, ASCE 41-17, ASCE 7-16 and ACI 14-19 and some other by give a proper citation of each Code.

Download BCP-2021

Unit Conversion

In Civil Engineering it may be on Construction Site while Executing any project or doing calculation in studies or in structural engineering while designing a structures or it may be in any field, it becomes problem when you are not familiar with the basics units. So In this short blog you will be able to convert any units to other unit without memorizing each one. If you know about the most basics unit then you can convert and manipulate bigger units and calculation by just using these concepts.

One thing to remember is if you convert a bigger unit to Smaller one the you have to Multiply with equivalent value and from smaller to bigger one then divide the equivalent value. The following example will clear your concepts.

(1) Linear or One Dimensional (1D) Unit

Length, Distance, Displacement

1st you should know about one linear or dimensional units and these are the basics to convert to any others units if 2D (Area) & 3D(Volume) e.g foot, meters and inches ect if you don’t know about these basics then you can learn it by using a measuring tape (inchi tap). These are basics then you can convert bigger linear units e.g Km, miles etc. You can see here the feets, inches and soot (soother) on the upper part and meters, cm and mm on the lower part horizontally.

Measuring Tap

(2) Two Dimensional(2D) Units

Area, surface area, cross-sectional area

So Area is a 2 Dimensional quantity and you can find these units by just squaring of the one dimensional or linear units e.g taking square of m you will got m2 and the same way all other units. It can convert from MKS (meter, kilogram,second) to FPS (Foot,pound Second).

(a)Example: Convert=>5m2 to ft3 => 20m2 = 20 (1*3.28)2 =20*10.76 ft2= 215.2ft2(here using only linear units and converted from bigger to smaller that’s why multiplied)

(b)Example: Convert=>50ft2 => m2 = 50* (1/3.28)2 =50*0.0929 ft2= 4.645m2 (here using only linear units and converted from smaller to bigger units that’s why divide)

(3) Three Dimensional (3D)


Volume is a Three Dimensional Unit and you received that unit by taking cube of 1d units e.g if you take cube of ft then it will become ft3 which is 3d unit. It can be converted any 3d units of MKS(meter, kilogram, second) to FPS(foot,pound, second) with the help of linear units without memorize the exact relation between them.

(b)Example: Convert=> 5m3 to ft3 => 5m3 = 5 (1*3.28)3 =5*35.3 ft3=176.4ft3 (here using only linear units and converted from bigger to smaller that’s why multiplied )

(b)Example: Convert=>40ft3 => m3 = 40* (1/3.28)2 =40*0.028 ft3= 1.12m2 (here using only linear units and converted from smaller to bigger units that’s why divide)

(4) Force/Weight/Load

Force,weight and load are same terms used in Civil Engineering and general units used for that is Newton(N), Kg, Pound (lb), KN, Kip(kilo-pound).

If you know about the most basics one e.g 1 Kg=10 N, 1 kg= 2.205 lb then you can convert any units with the help of these tow.

Examples: Convert=>

  • 10 kg=> N=> 10 kg= 10 *10 N = 100 N (multiplied; Bigger=>Smaller)
  • 200 lb=>KN=> suppose here we don’t know about the lb and KN relation then 1st we will convert lb to know unit that we know. So taking help from “1 kg = 10 N” & “1 kg= 2.205 lb” , 1 lb= (1/2.205) kg= 0.4535 kg , now convert the 0.4535kg into N ; 0.4535*10 N= 4.535N Now convert it to KN(divide by 1000); 0.004535 KN. So 1 lb=0.004535 KN. Now 200 lb= 200 *0.004535 KN = 0.91 KN.

The same way you can convert things without any single relations known.

(5) Stresses (Force/Area) and Densities (Force/Volume) and Moment/Torque (Force *Distance0

So if you have learnt about how to convert forces and 1d(length), 2D(area), 3d(Volume) units then you can easily convert the units of stresses, Densities and Moments/ torques etc.

So we will solve one example for stresses

Examples: Convert=> 1Mpa to Psi

Mpa= N/mm2 and Psi= lb/in2 ; 1 N/mm2 ; So suppose here I don’t know about lb and N relation then taking help of know relations e.g 1 kg = 10 N=> 1 N= 0.1 Kg now replace the kg by pound (lb) because we know that relation; 1 N= 0.1 ( 2.205 lb)=> 1N= 0.2205 lb and the same way convert mm2 to in2 => suppose we don’t know the relations between mm to in then; 1mm2= (1/1000)2 = 1o-6 m2; converted into meters because we know the relation between meter to ft; 10-6 (3.28)2 ft2 = 0.00001076 ft2 now convert that feets to inches; 0.00001076*(12)2 in2= 0.001549 in2 .

Now put the values of 1 N= 0.2205 lb and 1mm2= 0.001549 ; 1 N/mm2(MPa)= 0.2205 lb/0.001549 in2 (Psi)=> 1 N/mm2=143 Psi but exactly it is equal to 145 Psi as I put values approximately.

so from the above example you may have cleared that only know the basics concepts you can derive any units.

Watch the Video given below I have discussed it briefly;


==========Thank You==========